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Abstract

Bioturbation is an important ecosystem process, and the loss of native digging mammals
due to introduced predators and habitat loss may have detrimental consequences for eco-
system health. The mycophagous woylie (Beftongia penicillata ogilbyi) was once wide-
spread across the Australian continent and currently exists in a greatly reduced range,
while the omnivorous quenda (Isoodon fusciventer), which once cccurred across the south-
ern part of Western Australia (WA), remains common in south west WA over a reduced
range, Populations of these two digging marsupials are currently maintained within sanctu-
aries where they can reach high densities. To assess the influence these digging marsupials
have on fungal assemblages, we investigated fungal root associations among seedlings of a
key mycorrhizal forest canopy species, Corymbia calophylia, R. Br. K. D. Hilland L. A, 8.
Johnson. Seedlings were grown in s0il collected from inside (heavily-dug soil) and outside
(minimally-dug soil) two predator-proof sanctuaries. Our results showed that above-ground
seedling biomass was significantly greater for seedlings grown in soil collected from inside
the sanctuaries. There were no differences in the diversity or species richness of rhizos-
phere fangal communities isolated from these seedlings; however, the community com-
position was significantly different. This was most obvious for the predator-proof enclo-
sure that had been in place for 20 vears (Karakamia Sanctuary) compared with the more
recently-installed Perup Sanctuary (fenced in 2010; 4 years before this study). At Karaka-
mia, there were greater numbers of putatively hypogeous ectomycorrhizal fungi inside the
enclosure and four times the number of operational taxonomic units of arbuscular mycor-
thizal fungi outside the enclosure. The differences in fungal communities suggest that dig-
ging mammals play a pivotal role in ecosystem functioning by influencing the rhizosphere
of this key forest canopy species, which has implications for maintaining the healfth and
persistence of forests,
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mammals, it may result in a cascade effect with reduced digging activity, lower rates
of scat deposition and therefore potentially reduced colonisation by fungi, which may
further exacerbate forest declines.

The woylie (Bettongia penicillata ogilbyi; Potoroidae) was once abundant
across ~35% of the Australian mainland (Abbott 2008; Shortridge 1909), where it
inhabited a broad range of habitats (Finlayson 1958; Start et al. 1998). Today, largely
due to the impact of introduced predators, this species occupies less than 1% of its origi-
nal range in the wild in south Western Australia, reinforced by additional populations
within predator-proof sanctuaries (Wayne et al. 2015). Each woylie (~ 1.3 kg body mass)
creates between 38 and 114 diggings per night searching for their main diet of hypo-
geous fungi, extrapolating to~4.8 tonnes of soilfyear per individual (Garkaklis et al.
2004). The decrease in woylie foraging has had a marked impact on soil turnover, soil
dynamics, and nutrient cycling across these landscapes (Garkaklis et al. 2000, 2003).

Quenda (Isoodon fusciventer; Peramelidae) are common within south western Aus-
tralia; however, their historical distribution of has contracted in the last 150 years
(Abbott 2008). Quenda inhabit dense vegetation within native forest {(Abbott 2008) but
are also commonly seen in remnant vegetation within urban areas (Bryant et al. 2017;
Hillman and Thompson 2016)}. The quenda is omnivorous, feeding on insects, plants,
fruits, seeds and fungi (Quin 1985). Quenda are active diggers, creating characteristic
cone shaped diggings which collect leaf litter and seeds (Valentine et al. 2013). A single
guenda (f.1-1.7 kg body mass) can create ~ 45 digs per day, which equates to 3.9 tonnes
of soil moved per year by each animal (Valentine et al. 2013). Their diggings markedly
alter water infiltration, nutrient cycling, seedling recruitment (Valentine et al. 2017) and
growth (Valentine et al. 2018).

Previous studies have shown that the absence or exclusion of digging mammals influ-
ences fungal communities (e.g. Clarke et al. 2015; Gehring et al. 2002), and it is therefore
important to identify the impacts this may have on plant growth and health. Mycophagous
mammals influence soil properties with their digging activity (Eldridge et al. 2015; Val-
entine et al. 2017), in addition to being vectors of fungal spores which in turn is likely to
influence soil fungi assemblages (Tay et al. 2018). Seedlings grown in the spoil heap of
quenda diggings exhibited improved growth compared to those grown in soil from within
the digging or in undug soil (Valentine et al. 2018) and seedlings inoculated with quenda
scats demonstrate a greater diversity of rhizosphere fungi compared with controls (Tay
et al. 2018). The existence of woylies and quenda at high densities within large predator-
proof wildlife sanctuaries provides the opportunify to examine their inipact on communi-
ties of rhiizosphere fungi and flow-on effects for seedling establishment.

‘Dug’ soil was collected from within predator-proof sanctuaries where woylies and
quenda have been reintroduced and the turnover of soil is considerable. ‘Undug’ soil was
collected from immediately outside these sanctuaries where lower densitics of animals still
dig, but the overall rate of soil turnover is considerably lower compared to within the sanc-
tuary. We compared the rhizosphere fungi for seedlings grown in seil collected from inside
and outside two predator-proof sanctuaries, and identified whether dug soils had improved
seedling growth. We predicted that the communities of rhizosphere fangi in the presence
of preater densitics of woylies and quenda (within sanctuaries) would be distinctly differ-
ent from those in the absence of such high densities (outside sanctuaries). For example,
we predicted a greater abundance of hypogeous ectomycorrhizal species associated with
seediings grown on soil from within sanctuaries. We also predicted that seedlings grown in
soil from within sanctuaries would have a larger biomass than seedlings grown in soil from
outside due to the increased abundance and diversity of beneficial rthizosphere fungi.
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rounding area. Current population estimates suggest ~ 1 woylie/ha inside the sanctuary
(M. Virgo Department of Biodiversity, Conservation and Attractions, pers. comm.).
Waoylies persist outside the sanctuary but at lower densities compared with inside the
fence. Quenda are also present both inside the sanctuary (current estimate ~ 1.42 quenda/
ha, M. Virgo Department of Biodiversity, Conservation and Attractions, unpublished
data) and outside the sanctuary at lower densities. There are also [0 animal-proof exclo-
sures within the main fence, each 10% 10 m, constructed in 2010, which are monitored
for vegetation changes.

Soil collection

A total of 30 soil cores were collected at each study site; 15 from within the sanctuary
and 15 from the surrcunding forest outside the sanctuary fence. In addition, 11 soil cores
were collected at the Perup site from within six of the 10 vegetation monitoring exclo-
sures. All cores were collected from within the rhizosphere of mature C. calophylia trees,
located < | m from the base of randomly-selected trees.

Dry leaves and sticks were brushed from the surface of the soil, and then soil corers
{100 270 mm (diameter X fength) plastic PVC pipe with a sharpened cutting edge] were
hammered into the ground to a depth of ~200 mm with a rubber mallet. Decomposed
organic matter on the soil surface was collected with the soil core. The intact soil core was
then transferred to new 160X 160 mum (diameter X height) plastic pots. Asepsis was main-
tained throughout soil collection activities with the corer and digging tools wiped with
methylated spirits between samples. Pots were kept covered during transport and efforts
were made when handling pots to ensure no cross-contamination ocenrred.

Seedling biomass

Pots were seeded with C. calophylla seeds sourced from the Northern Jarrah Forest biore-
gion. Three seeds per pot were planted; seedlings were thinned at the cotyledon stage to
ane per pot. Seedlings were grown in an evaporatively-cooled glasshouse for 4 months
from October 2014 until February 2015. Pots were watered automatically for only 30 s,
three times a day, in an effort to reduce leaching from the free-draining pots. Pot locations
were randomised weekly. In late January, seedlings exhibited symptoms of nutrient defi-
ciency and were consequently treated with 50 mL of a general plant fertiliser (Thrive All
Purpose liquid fertiliser, Yates, Padstow NSW) 0.25 g/L. solution, twice weekly for 4 weeks
before harvest.

Root harvesting and seedling measurements

Seedlings were harvested after 4 months and the roots manually extracted and gently
washed to remove all soil. The fine roots (i.e. those most likely to contain mycorrhiza and
other fungi of interest) were then stripped off by hand and stored at — 18 °C until analysis
by High Throughput Sequencing (HTS). The harvested seedlings were dried at 51 °C for
72 h before being weighed.
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close alignment with sequences from a known source (e.g. fruiting body, mycorrhizal root
tip) and this information was used as an additional layer to guide putative life history clas-
sification. Guilds used in this study included ectomyccorhiza (ECM), arbuscular mycor-
rhiza (AM), ericoid mycorrhiza (ericoid), saprotroph, endophyte, or pathogen. Where gaild
membership was ambiguous {i.e. ECM or saprotroph), OTUs were assigned membership in
both groups.

Data analysis
Seedling above-ground biomass

We compared the above-ground biomass by two-way factorial ANOVA with sanctuary and
location (insidefoutside enclosuie) as independent factors, Additionally, we carried out a
one-way ANOVA for the Perup data only with location {enclosure inside, enclosure outside
and exclosure inside) as an independent factor as we had additional samples from exclo-
sures within the sanctuary,

Fungal diversity and species richness

To compare the diversity of fungi present, we calculated the Shamnon’s Diversity Index
(PAST v3) and total number of fungal taxa and compared these data by two-way factorial
ANOVA with site (Karakamia and Perup) and location (insidefoutside sanctuary) as inde-
pendent factors. We also carried out one-way ANOVA for the Perup data only as we had
additional samiples from exclosures within the sanctuary.

Fungal community composition

To compare the fungal community composition in the root samples, we performed non-
metric Multidimensional Scaling (MDS) using Bray—Curtis similarity index (PAST v3)
(Hammer and Harper 2013; Hammer et al. 2001) vsing the relative abundances of each
fungal OTU (Nguyen et al. 2017; Ottosson et al. 2015), A two-way PERMANGOVA was
carried out, comparing sanctuary (Karakamia and Perup) and location (inside and out-
side the enclosure) as independent factors. For Perup, we also carried out a one-way
PERMANOVA comparing fungal community composition by location (inside enclosure,
outside enclosure, or within the animal exclosures). Two samples (one from each sanciu-
ary) were marked outliers on the Multidimensional scaling plot (MDS) and were therefore
excluded from analysis. These analyses were followed by similarity percentage (SIMPER)
analyses to determine which OTUs contributed to the observed differences in fungal com-
munities inside and outside the sanctuaries.

Results
Seedling above-ground biomass
There was a significant effect of location of soil sample on C. calopiylla seedling growth,

with seedlings having significantly higher above-ground biomass (dry weight) when grown
in socils taken from within the sanctuaries compared with outside (# 5,=16.91, p<0.001;
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Fig.4 The difference in refative abundance (inside sanctuary and oudside sanctuary) for alf identified fungal
OTUs from Corymbia calophylia seedling roots grows in soils sampled from Karakamia Sanctuary, south
western Australia, contributing to the top 70% of a similarity percentage (SIMPER) analysis

study, fungi found both inside and outside the sanctuaries formed fruiting bodies that could
be eaten and dispersed by woylies and quenda. There were many more putatively hypo-
geous fungi exclusively found inside the enclosure at Karakamia. The difference in fungal
communities inside and outside the sanctuary and the improved seedling growth in soil
collected from within the sanctoaries may be an indirect result of woylie and quenda activ-
ity. Increased plant growth associated with digging activities has also been noted by Trav-
ers et al. (2012). Our work suggests that digging mammals such as the woylie and quenda
play an important part as dispersers of fungi and are imporiant for plant growth in forest
ecosystems.

It is likely that the length of time that the sanctuaries had been in existence influences
the degree of difference in fungal communities on either side of the fence. The differences
in fungal communities were most obvious for Karakamia Sanctuary, which had been in
place for 20 years at the time of this study, and has markedly fewer digging mammals out-
side the sanctuary compared with inside. By contrast, Perup Sancivary had been fenced
only four years before this study and animals were also present outside the fence, albeit
at lower densities. Therefore, although both sanctuaries have similar densities of digging
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sanctuaries where these digging mammals are present. With the widespread loss of digging
marnmals across the Australian landscape, it is likely these ecosystems have changed dras-
tically. Improving our knowledge of how digging mammals influence fungal communities
and seedling development contributes to a better understanding of ecosystem functioning,
revealing how these mamrnals can play a critical role in maintaining and restoring forests.
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